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Braid description of collective fluctuations in a few-body system

Sigmund Clausen,1,2 Geir Helgesen,1 and Arne T. Skjeltorp1,2

1Institute for Energy Technology, N-2007 Kjeller, Norway
2Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway
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A few-body system of magnetic holes is studied both experimentally and numerically. Notions from braid
theory are used to describe the motion in a very compact manner. The time history ofn magnetic holes moving
in a plane is represented by ann-strand braid, and the fluctuations of the signed crossing number is investi-
gated. A wide range of dynamical behavior is observed. For certain parameter values the fluctuations are highly
intermittent, and there is a hierarchical ordering of the dynamics in both space and time. In this case the motion
is well modeled by a one-dimensional Le´vy walk. @S1063-651X~98!00910-6#

PACS number~s!: 05.40.1j, 05.45.1b, 75.50.Mm, 83.10.Pp
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I. INTRODUCTION

How can one most simply characterize the dynamics
systems with several moving interacting particles? It has
lier been proposed that braid theory makes a compact
tiotemporal description of the dynamics in two-dimension
systems possible@1–3#. By plotting the position of an objec
in space versus time, one obtains aspace-timediagram of the
motion of that object. A moving particle will generate a on
dimensional curve. Several particles in motion will gener
a set of braided curves. This is a way of ‘‘freezing’’ th
dynamics, and the frozen dynamical structure, thebraid, be-
comes the time history of the moving particles. By inves
gating the topology of the braid it is possible to gain insig
into the particle dynamics. Braid theory is a subfield of kn
theory, and has been a rich source of insight into sev
areas of physics lately. For example, there has been s
theoretical work by Moore who looked at the motion ofn
particles in two dimensions in general, and proved that
braid type can be realized as a set of trajectories in so
dynamical system@1#. Mc. Robie and Thompson used brai
to describe the intertwining of a set of phase curv
„xi(t),ẋi(t)… in a one-dimensional dynamical system@4#.
There are astrophysical applications as well. Magnetic f
tures on the Sun can walk randomly about each other du
the turbulent convection below the surface. Berger
shown that a braid representing the time history of th
motions provide topological information about the magne
field above the surface, i.e., in the solar corona@5#. The
physical realization of using knots as a space-time desc
tion of the motion of magnetic holes was introduced
Skjeltorp @2,3#. Later, notions from braid theory have bee
used to obtain a symbolic description of the dynamics
magnetic holes in a rotating magnetic field@6#. Braid theory
made a simple topological description of the few-body d
namics possible, and the extraction of periodic orbits w
straightforward@7#. The objective of the present work is t
extend some of these earlier ideas, and show how to s
collective fluctuations in a system of magnetic holes
means of braid theory.

Magnetic holes are nonmagnetic voids in a magne
fluid, and may be realized by dispersing polystyrene mic
spheres in a ferrofluid@8#. The magnetic holes are confine
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between two glass plates, and forced to move about e
other by a rotating magnetic field. They interact by dipo
forces, and for low values of the driving frequency the ma
netic holes line up in chains which are able to follow t
rotating field. This type of behavior results in a twisting
the strands representing the trajectories of the magnetic h
in space-time. There is a competition between the magn
dipolar forces and the viscous forces from the carrier flu
As the driving frequency is increased due to the relativ
high viscosity of the ferrofluid, the chain of microspheres h
to split up into smaller chain pieces which rotate with t
field for a short while. In addition, there is also a rotation
the whole collection of chain pieces as one unit in terms o
twisting of the space-time trajectories. The total twist in
braid can be found, and it is possible to extract phase p
traits of the periodic modes by the braid analysis@7#.

The behavior may become rather complex and aperio
if there is not full rotational symmetry of the magnetic fiel
A complete mapping of the modes of motion is then nea
impossible to construct@7#, and one might instead focus o
some other characteristics of the braid and try to desc
these in order to map out the dynamic phase behavior.
such characteristic parameter is the signed crossing num
the writhe, of the space-time braids plaited by the magne
holes. In this work the time sequence of the writhe has b
studied, and we show that the behavior ranges from perio
to random motion. For certain values of the parameters of
driving magnetic field the dynamics is intermittent, and
hierarchical ordering takes place in both space and time.
rotational part of the motion of the holes is then well mo
eled by a one-dimensionalLévy walk, where large fluctua-
tions lead to a socalledsuperdiffusivebehavior, i.e., an en-
hanced diffusion@9#. The potential for suchanomalous
diffusive behavior exists in any physical situation whe
there is some hierarchical ordering of the processes. T
ordering can take place in both space and time, and ano
lous diffusion has been shown to be intimately connected
the notion offractal space and time@10,11#. Recently several
authors have investigated the connection between anoma
transport and Le´vy statistics. The Le´vy walk describes par-
ticularly well Hamiltonian chaos such as diffusion of trac
particles in a two-dimensional flow@12#, and phase diffusion
in Josephson junctions@13#.
4229 © 1998 The American Physical Society
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4230 PRE 58CLAUSEN, HELGESEN, AND SKJELTORP
The experimental system and the model have been t
oughly discussed elsewhere@6,14,15#. A short description of
our experimental system is given in Sec. II. Section III giv
an introduction to braids and describes the fluctuation an
sis used. The results will be presented in Sec. IV, and fina
in Sec. V, some concluding remarks will be made.

II. EXPERIMENT AND MODEL

Figure 1 shows our experimental system with magne
holes confined by two glass plates to a nearly tw
dimensional geometry. The magnetic holes consisted

FIG. 1. Schematic view of the experimental setup with plas
microspheres submerged in a magnetized ferrofluid. Two pair
coils are used to produce a magnetic field rotating in the~x,y! plane.
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monodisperse micrometer-sized spheres@16# dispersed in a
magnetized ferrofluid. In the present experiment the size
the spheres used was 96mm. A limited number of spheres
could be picked out and collected by a hand held mag
when viewed in a microscope. The experimental cell w
placed within a system of two pairs of coils, producing
magnetic field rotating within the samplexy plane. In order
to record the motions of the microspheres we used a vi
camera connected to an optical microscope and a work
tion to extract the positions of the microspheres. Long ti
sequences of the motion could be analyzed in real time,
converted into a braid notation.

When a ferrofluid sample containing monodisperse mic
spheres is placed in a uniform magnetic fieldHW , the voids
created by the microspheres acquire an apparent mag
dipole momentsmW antiparallel to the external field:

mW 52VxeffHW . ~1!

Here,V is the volume of a microsphere andxeff is the effec-
tive volume susceptibility of the ferrofluid@8#. We used cir-
cularly or elliptically polarized magnetic fields rotatin
within the sample~x,y! plane with angular velocityvH

HW ~ t !5„Hx cos~vHt !,«Hx sin~vHt !… ~2!

with «5Hy /Hx as a measure of the field anisotropy.
The dipolar interaction energy ofn magnetic holes of di-

ameterd is given by

c
of
U~rW1 ,rW2 ,...,rWn ,t !5H (
i . j

n H m2~ t !

r i j
3

2
3@mW ~ t !•rW i j #

2

r i j
5 J if all r i j .d

` if any r i j <d,

~3!
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whererW i j 5rW j2rW i is the vector joining the centres of the in
teracting microspheres andrW i5(xi ,yi). The components o
the magnetic force acting on thei th magnetic hole are given
by

Fi ,j52(
i . j

n
]

]j j
U~rW1 ,rW2 , . . . ,rWn ,t !, ~4!

wherej denotes eitherx or y. The system is overdamped du
to the large viscosity of the ferrofluid, and we may therefo
neglect inertial forces. Thus, we assume that at any time
velocity of thei th magnetic hole is proportional to the forc
given by Eq.~4!:

dj i

dt
5bFi ,j , ~5!

where b5(3phd)21, and h is the viscosity of the ferro-
fluid. Equations~3!–~5! can be transformed into a dimen
sionless form suitable for numerical integration by letti
Hx51 andb5 1

6 . By this choice of parameters, the thresho
angular velocity for the stable rotation of a single pair
e
e

f

magnetic holes is equal to 1. The equations of motion w
simulated using a fourth order Runge-Kutta algorithm, a
compared with our experimental results.

For a static magnetic field the minimum energy state
reached when all the microspheres are arranged in a li
chain oriented along the direction of the field. As soon as
field starts to rotate in the plane, the chain tries to follow t
rotation of the field but with a phase lag due to the visco
counterforce that slows down the motion. As long as
frequency is sufficiently low, the chain as a whole is able
follow the rotation of the field. However, above a well d
fined threshold frequency, the phase lag crosses a cri
value and the chain may temporarily split into shorter piec

With the existing experimental setup it is possible to gr
and digitize up to 25 images per second, which gives u
continuous motion picture of the particle dynamics. A tw
dimensional projection of the~x,y,t! space-time braid traced
by the motion of five magnetic holes is shown in Fig. 2~a!.
Due to the relatively high viscosity of the ferrofluid, th
chain of microspheres has to divide into two smaller pie
containing two and three microspheres. These smaller pie
are able to rotate with the field. One magnetic hole is int
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PRE 58 4231BRAID DESCRIPTION OF COLLECTIVE . . .
changed between the two chain pieces, making the ove
motion complicated. In addition, there is an overall twisti
of the space-time trajectories. The total twist in the braid c
be extracted by running the braid word through Garsid
word algorithm@17#, which can separate the external twist
an arbitrary braid from the local intertwining of the strand
Garside’s solution may be given by means ofnormal forms
@18#. Here we shall follow a refinement of this solution du
to Elrifai and Morton@19#.

Figure 2~b! shows the resulting braid structure after r
moval of the total twist from the braid in Fig. 2~a!. The
motion proves to be periodic, and it is possible to extr
phase portraits of the periodic modes by this type of anal
@7#. For more complex dynamics other approaches
needed. In Sec. III we describe the fluctuation analysis of
rotational motion after a short introduction to braid theory.
more complete and thorough introduction to braid theory
be found in the book by Birman@18#.

III. BRAIDS AND FLUCTUATION ANALYSIS

A geometric braid is a set ofn intertwined curves stretch
ing between two parallel planes. In order to describe a b
without having to draw it, one may decompose it into a pro
uct of elementary braids; see Fig. 3. For ann-strand system
there existn21 elementary braids called generators or l
ters and denoted bys1 ,s2 , . . . ,sn21 . The conventions we
apply here are the following.

~i! The spatiotemporal strands traced by the magn
holes are running horizontally from left to right, i.e., in th
direction of the time axis.

~ii ! The uppermost strand is denoted by 1.
~iii ! An elementary braids i denotes thei th strand cross-

ing over the (i 11)th strand, while its inverses i
21 denotes

the i th strand crossingunder the (i 11)th strand.
~iv! If none of then strand crosses, we have an ident

braid I n .
In order to characterize the structure and complexity o

braid, different numbers ortopological invariantscan be cal-
culated. One such number is thewrithe of the braid, Wr,
which is simply the sum of the exponents of the braid wo

FIG. 2. ~a! A space-time plot of five magnetic holes moving
the ~x,y! plane. Thex axis goes into the paper.~b! The resulting
braid structure after removal of the total twist from the braid in~a!.
The periodicity is easily visible, and the repeating braid structur
indicated with the vertical bars.
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a positive crossing adds11 and a negative crossing add
21. The writhe is therefore equal to the number of posit
crossings minus the number of negative crossings. As
example, consider the braid in Fig. 3~b!, where Wr52. A
second useful number to calculate is the number oftwists in
the braid. A geometric picture of apositive half twistof n
strands,Dn , is obtained by imagining then strings attached
to a rod which is given a 180° twist as shown in Fig. 4.
twist commutes with all other braid structures, and theref
opposite senses of twist in a braid may be moved nearb
each other and cancel out.

For small systems of interacting microspheres under
symmetry of the driving field, the repeat period of the m
crosphere motion is relatively short. This makes a comp
characterization of the motion in terms of a sequence of b
generators, a braid word, easy to handle. However, if
symmetry is broken as for an asymmetric, elliptically pola
ized magnetic field, the rotational motion is in many cas
aperiodic, and one has to resort to a statistical descript
There are several ways of doing a statistical analysis
braids. In the following we will show that even a simple
possible analysis of the statistical fluctuations of a braid
pological invariant, like the writhe, can provide valuable i
formation about the dynamic phase behavior.

The recipe for the fluctuation analysis is now as follow
we make a video recording of the motion ofn magnetic
holes, where the output is a braid word describing the spa
time braid of the motion. This braid is then divided into wh
may be denotedhalf period braids. One half period braid is
simply the space-time braid describing the motion of t
microspheres during one half of the periodT of the rotating
field; see Fig. 5. As the total braid grows with timet, the
value of Wr is extracted every time a new half period braid
plaited, i.e., whenevert5mT/2, wherem is the number of
completed half periods@20#. We sett5m, so that the unit of
time is half a period of the rotating field. This approa
results in a time series; Wr(t). However, this time series
does not give a complete topological description of the

is

FIG. 3. The generators of the four-strand Artin braid group~a!
and an example of a braid composed of them~b!.

FIG. 4. A positive half twist in the four-strand Artin braid
group.
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4232 PRE 58CLAUSEN, HELGESEN, AND SKJELTORP
namics, as there are several combinations of crossing
strands which result in the same value of Wr(t). Neverthe-
less, our primary goal now is to study the aperiodic mot
of the magnetic holes and the fluctuations in the pattern
the strands. In addition to the total writhe as a function
time, we are also interested in the successive half pe
variations defined by

d Wr~ t !5Wr~ t !2Wr~ t21!, ~6!

which might be thought of as an averagewrithe velocity.
d Wr(t) equals the writhe Wr of half period braid numbert;
see Fig. 5.

The maximum value whichd Wr can achieve equals th
number of crossings in a half twist, i.e., (d Wr)max5n(n
21)/2. This means that the motion ofn magnetic holes can
be described by a series of half period braids withd WrP
@2n(n21)/2,n(n21)/2#, each representing the dynamic
behavior during half a period of the rotating field. The writ
velocity is a good measure of the rotational motion in t
system, and a large value ofd Wr indicates a high degree o
rotational motion, i.e., large chain pieces are able to ro
with the field. Whend Wr5(d Wr)max, the whole chain of
microspheres rotates in unison with the magnetic field. Si
the preferred direction of rotation of the magnetic holes is
the direction of the rotating field most of the crossings of
space-time strands are positive, andd Wr.0. However, for
certain parameter values the whole chain rotates in the
posite direction to that of the magnetic field resulting in
negativetwisting of the space-time braid@7#. The total Wr is
still positive, since the smaller chain pieces rotates in uni
with the magnetic field. A positive total Wr is always th
case for the spatiotemporal braids in the present system

IV. RESULTS

In the following analysis we limit ourselves to study th
dynamics ofn57 magnetic holes. The numbern57 was
chosen more or less arbitrarily—it is not too smalln
52,3,4) to make the motion relatively simple, and it is n
too large (n.10) to make a full analysis very time consum
ing. However, we observe qualitatively similar statistical b
havior for all n up to n520 magnetic holes, which is th
maximum number analyzed in this study. We fix the drivi
frequency tof H5vH/2p50.25 Hz and vary the anisotrop
parameter«. Different types of dynamical behavior are o
served, ranging from periodic to intermittent and rando
For circularly polarized magnetic fields the motion is pe

FIG. 5. Schematic illustration of the division of a braid in
three half period braids. The accumulated value of the signed cr
ing number Wr(t) and the half period variationsd Wr(t) are writ-
ten below the braid.
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odic, and the results have been described in detail elsew
@7#. However, in order to obtain an intuitive understanding
what we do, we first illustrate the fluctuation analysis
describing how it works for the periodic case before movi
on to describe more complex aperiodic dynamics. Only
perimental results are presented unless stated otherwise

A. Periodic behavior

For a circularly polarized field («51.0) the solution is
periodic. The frequencyf H50.25 Hz is above the critica
frequencyf c'0.13 Hz for stable rotation ofn57 magnetic
holes@7#. The linear chain of microspheres is therefore u
stable, and splits into two smaller units containing three a
four microspheres each; see Fig. 6. Both these units are
to rotate with the field without breaking up into small
pieces. In addition to this internal motion, the whole cha
rotates in the direction of the magnetic field resulting in
twisting of the space-time braid describing the motion of t
microspheres. A careful inspection of Fig. 6 reveals a sm
degree of twisting. Figure 7 shows the half period variatio
d Wr as a function of the timet measured in units of hal
periods.d Wr59 for most of the half period braids, which i
identical to the number of crossings of the strands in the h
period braids. The strands of the half period braid repres
ing the motion of the three microspheres crosses three ti

s-
FIG. 6. Space-time braid of seven magnetic holes moving s

jected to a rotating magnetic field. The field is circularly polariz
(«51.0), and the motion is periodic with a slow twisting which
beginning to show.

FIG. 7. Half period variationsd Wr vs dimensionless timet
measured in units of half a period of the rotating field for the mo
of motion shown in Fig. 6. Lines are drawn between the poi
which indicate the value ofd Wr for half period braid numbert.
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PRE 58 4233BRAID DESCRIPTION OF COLLECTIVE . . .
whereas the strands describing the motion of the four mic
spheres crosses six times, i.e., a total of nine crossings
Fig. 6. In addition, the slow twisting of the braid results
higher values ofd Wr at approximately fixed time intervals
The variations of these values ofd Wr can be explained by
the following argument: One complete half twist is usua
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not contained in one half period braid, and the ratio betwe
theaverage twist frequency fD and the driving frequencyf H
is incommensurate. This results in some small variations
d Wr(t) whenever one half twist is about to be complete
However, the periodic behavior is quantified by calculati
the autocorrelation function defined by
C~ t !5
Š@d Wr~t!2^d Wr~t!&#@d Wr~t1t !2^d Wr~t!&#‹

Š@d Wr~t!2^d Wr~t!&#2
‹

, ~7!
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where the brackets indicate averaging over all timest, andt
is a time-interval.C(t) is then a measure of the spatiotem
poral correlations in the system, that is, it measures the
relations between half periods braids separated byt half pe-
riods in time. Figure 8 shows the result of calculating t
autocorrelation function for«51.0. A clear indication of pe-
riodic behavior is seen, where the period equals the tim
takes to complete one half twist. As seen from the figur
takes about 11 half periods of the driving field before o
half twist is completed, i.e., for the whole chain to comple
a 180° rotation.

The motion of the seven magnetic holes is periodic a
similar for all values of the anisotropy parameter down
«'0.85. At«'0.85 the first instability occurs, and the cha
piece containing four microspheres is unstable and splits
two pairs of microspheres; see Fig. 9. However, this happ
at fixed time intervals, which are equal to the time it takes
complete one half twist, that is, the previously defined
riod. Figure 8 shows the autocorrelation function, and
period for«50.85 is similar to that for«51.0. However, an
additional peak is observed in the figure for«50.85 due to
the 4→212 instability. At lower values of« further insta-
bilities occur and the motion becomes aperiodic.

FIG. 8. Plots of the autocorrelation functionC(t) characterizing
the half period variationsd Wr(t) for «51.0 ~upper curve! and«
50.85 ~lower curve!. The time intervalt is measured in units o
half a period of the driving field. In both casesC(t) fluctuates
around zero, but for«50.85 the data are shifted relative to th
ordinate axis for clarity.
r-

it
it
e

d

to
ns
o
-
e

B. Random fluctuations

As explained above, Wr(t) increases steadily with timet
due to the large majority of positive crossings of the spa
time strands. In order to observe the fluctuations more ea
the average increasing trend is subtracted from the orig
value of Wr(t). The difference is denoted by Wr(t)8:

Wr~ t !85Wr~ t !2td Wr ~8!

whered Wr is the average value ofd Wr(t) averaged over
the total number of half periodsN:

d Wr5
1

N (
t51

N

d Wr~ t !. ~9!

Now, for «,0.85 the motion becomes aperiodic. Figu
10~a! shows Wr(t)8 for «50.80. The associated half perio
variations are shown in Fig. 10~b!. Figures 10~c! and 10~d!
show the same quantities for«50.70. The half period varia-
tions d Wr(t) are still defined according to Eq.~6!. Using
Wr(t)8 instead of Wr(t) in this definition will only shift
d Wr(t) by d Wr and the fluctuations will be centere
around zero instead of aroundd Wr. For both«50.80 and
0.70, the motion of the magnetic holes was recorded fo
total of 10 000 half periods of the rotating field, and th
braids can then be divided into a total of 10 000 half perio
braids. Only short sequences of the whole time series
shown in Fig. 10 in order to resolve the fluctuations.

Figure 11 shows the autocorrelation functionC(t) for the
two cases. It decays exponentially with a time correlat
length of about 30 half periods. This is a clear indication
random behavior with only short time correlations. In ad

FIG. 9. The first instability of the mode of motion depicted
Fig. 6. The chain piece containing four microspheres is not sta
and divides into two smaller pieces containing two microsphe
each as indicated by the arrow.
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FIG. 10. ~a! Time evolution of the signed crossing number Wr(t)8 of the space-time braid describing the motion of seven magnetic h
when«50.80. Timet is measured in units of half a period of the driving field.~b! The associated half period variationsd Wr(t). ~c! and
~d! show the same quantities for«50.70. In all four cases just a limited range of the total time series is displayed in order to resol
fluctuations.
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tion to calculating the autocorrelation function, we focus
tention on the dynamics of the variations

d Wr~ t,t!5Wr~t!82Wr~t2t !8, ~10!

where botht andt is measured in units of half a period of th
rotating field. By settingt51 in this equation, one regain
the definition of the half period variations in Eq.~6!. It is
important to notice that we select the complete set ofnon-
overlappingrecords separated byt half periods. Varying the
time intervalt enables us to study the fluctuations of Wr(t)8
on different time scales. A standard method of extract
information about the fluctuations in a time series is to c
culate the variance of the successive variations in that t
series. The variance of the variations defined in Eq.~10! as a
function of the time intervalt is given by the following ex-
pression:

s2~ t !5Š@d Wr~ t,t!2^d Wr~ t,t!&#2
‹, ~11!

where the brackets indicate averaging overt. Figure 12
shows the variance for both«50.80 and 0.70 calculate
from Eq. ~11!. The figure indicates random fluctuations ov
a relatively large time span. After an initial time span
about 30 half periods, the data approach the behavior

s2~ t !}t1.0 ~12!
-

g
l-
e

r

characteristic of random processes with independent in
ments. The deviations from the straight line in the figure
t.1000 is a finite size effect due to the limited time range
the data set.

Both the autocorrelation function and the variance sho
crossover from periodic to random behavior for relative
short times. The flat region in the plot of the variance fot

FIG. 11. Plots of the autocorrelation functionC(t) for «50.80
~upper curve! and «50.70 ~lower curve!. The time intervalt is
measured in units of half a period of the driving field. In both cas
C(t) fluctuates around zero, but for«50.70 the data are shifted
relative to the ordinate axis for clarity.
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PRE 58 4235BRAID DESCRIPTION OF COLLECTIVE . . .
,30 half periods is consistent with the short time behav
of C(t). For short times the motionappearsperiodic, and
the magnetic holes apparently try to find a periodic soluti
Relatively many of the half period braids show a division
the whole chain into the usual two chain pieces contain
three and four microspheres~Fig. 6! or a division into three
chain pieces~Fig. 9!. However, these solutions are on
stable for short times, and the motion appears random
longer times.

C. Critical behavior, intermittency, and Lévy motion

The motion of the seven magnetic holes seems to be c
acterized by random fluctuations down to«'0.62, where an
interesting type of behavior is observed. At this value of
anisotropy parameter there is a finite probability for sma
chain pieces to stay separated from each other for long tim
This behavior bears some resemblance to the one desc
earlier for two magnetic holes@21#. It was shown that when
«,0.70 the dynamics of two magnetic holes can be mode
by a fractal time random walk@22#. In that case the motion
consists of short step rotations of the pair axis interrupted
waiting times where the two microspheres separate, and
motion of the pair axis takes place. The distribution of the
waiting times shows a power law tail with an exponent d
pending on the magnetic field anisotropy«. However, in the
situation studied in this paper the separated chain piece
tate with the field, and rotational motion therefore tak
place during the times that they are separated. This leads
quite different statistical behavior, and the fluctuations of
signed crossing number will be highly intermittent, and
hierarchical ordering takes place in both space and time.
separation time exponenta depends on the anisotropy p
rameter« of the magnetic field, and seems to decrease wi
decreasing«. We believe that the mechanisms behind t
separation of the chain pieces are similar to the mechan
behind the separation of two magnetic holes described
detail earlier@21#, but we have not been able to find an
simple relationship betweena and « as was found for two
magnetic holes.

The overall motion can be modeled by a continuous-ti
one-dimensional Le´vy walk with a power law distribution of

FIG. 12. Variance s2(t) characterizing the increment
d Wr(t,t) versus time intervalt for «50.80 and 0.70. The time
interval is measured in units of half a period of the driving fie
The two dashed lines are the best fits to the experimental data
slopesh51.0 in the regiontP(50,1000).
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step lengths. This model of a Le´vy motion was proposed by
Klafter, Blumen, and Shleshinger@9#. Each time the chain of
microspheres separates into smaller pieces, a new step o
random walk is started. The separation times are define
the times the chain pieces stay separated from each o
and they are power law distributed with an exponent equa
the exponent of the distribution of the step lengths. This
always the case for a one-dimensional Le´vy walk, where the
velocity is independent of the step length@23#.

Figure 13 shows Wr(t)8 for «50.55 with the associated
half period variationsd Wr(t) plotted below. The driving
frequency is stillf H50.25 Hz. The motion of the magneti
holes was recorded for 10 000 half periods of the rotat
field, and the braids can thus be divided into a total of 10 0
half period braids. Clearly, the dynamical behavior diffe
from the one observed in the previous case. The fluctuat
are much larger, and the figure also shows long steps
Wr(t)8 with a constant velocityd Wr(t). There is adistri-
bution of step lengths, or equivalently a distribution of tim
intervals where long steps in Wr(t)8 are observed. During
these long time intervals the microspheres move in a reg
manner, with the chain of magnetic holes divided into thr
smaller pieces which rotate with the field. Two of these ch
pieces contain two microspheres whereas the third one
tains three, and the mode of motion is similar to the mot
during the instability occurring for«50.85; see Fig. 9. The
three chain pieces stay separated from each other for
times and the half period variationsd Wr(t)55 during the
steps, as seen in Fig. 13. This value equals the numbe
crossings of a half period braid describing 21213 magnetic
holes rotating with the field. When the chain pieces a
forced together again, the magnetic holes move in an ap
odic way for some time before they separate once more.
dynamical evolution is intermittent, and thus consists of b
quiescent and more chaotic phases which alternate tem

ith

FIG. 13. Time evolution of the signed crossing number Wr(t)8
of the space-time braid describing the motion of seven magn
holes in an elliptically polarized field with«50.55 ~upper curve!.
Time t is measured in units of half a period of the driving field. Th
lowermost curve shows the associated half period variati
d Wr(t).
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rally in an interspersed way. During the separation times
signed crossing number Wr(t)8 increases at a constant ra
causing the large scale fluctuations seen in Fig. 13. We
show that the motion is well modeled by a one-dimensio
Lévy walk with a distributionw(t) of quiescent time inter-
vals or separation timest. The tail of this distribution follows
a power law

w~ t !}t2~a11!, ~13!

characterized by an exponenta. The numberN of separation
times tsep larger thant goes as

N5N~ tsep>t !5E
t

`

w~ tsep!dtsep}t2a. ~14!

Figure 14 shows the distributionN of separation timest ex-
tracted from the time series shown in Fig. 13. It is possible
fit the data to a power law with an exponenta51.27
60.13 for t.20.

We want to find out how these long tails in the distrib
tion influence the behavior of the autocorrelation functio
The experimental data ofC(t) in Fig. 15 is fitted to a power

FIG. 14. Plots of the distributionN(tsep>t) of separation times
t for «50.55. The dashed line is the best fit to the experimental d
in the regiontP(20,1000).

FIG. 15. Plots of the autocorrelation functionC(t) characteriz-
ing the successive half period variationsd Wr(t). The time interval
is measured in units of half a period of the driving field. The das
line is the best fit to the experimental data in the reg
tP(1,3000).
e

ill
l

o

.

law decay over almost three decades in time, indicating lo
range correlations in the half period variationsd Wr(t),

C~ t !}t2g, ~15!

with the exponentg50.3460.12. According to theory@23#,
one expectsg5a21 for a one-dimensional Le´vy walk with
constant velocity whena.1.0. This is in good agreemen
with our observations.

Further confirmation of the proposed Le´vy motion is ob-
tained by calculating the variances2(t) of the fluctuations of
the experimental data using Eq.~11!, as shown in Fig. 16. In
the same figure we also display the results from a numer
simulation of the motion of the magnetic holes. In that ca
the dynamics was recorded for 500 000 half periods, and
parameters were the same as in the experiment. There
good fit of the data for long times to

s2~ t !}th, ~16!

with an exponenth51.7460.03 for the experimental case
The numerical data approach the same behavior for lon
times. In both cases a super diffusive behavior is obser
with h.1. As Fig. 16 shows, there is a finite size effect
the experimental data above approximately 1000 half p
ods, which is due to the limited time range in the data s
This observation is consistent with the results of the num
cal simulation, where the super diffusive behavior extends
longer times as the length of the time series increases.
exponenth is related to the separation time exponenta by
h532a, whena.1.0 @23#. Our results are consistent wit
this exponent relation.

A Lévy walk is a fractal generalization of Brownian mo
tion, and it is possible to relate the diffusion exponenth to
the fractal dimension of space and time. In this simple mo
of diffusion, space and time are coupled, and a step in sp
is associated with a certain time span. The ensemble of t
instants where jump events occur, form a fractal set w
fractal dimensiondt :

ta

d

FIG. 16. Variance s2(t) characterizing the increment
d Wr(t,t) vs time intervalt when «50.55. The time interval is
measured in units of half a period of the driving field. The dash
line is the best fit to the experimental data in the regi
tP(20,1000). The fitted line is extended beyondt51000 for clarity
and for comparison with the numerical data~full line!.
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dt5 Ha,
1,

a<1
a.1. ~17!

When do the stopover points form a fractal in space?
ordinary Brownian trajectory wiggles so much that it is a
tually two dimensional, independent of the dimension of
embedding space. For a Le´vy walk, where 1<a,2, the en-
semble of stopover points form a set with fractal dimens
dr @23#:

dr5
2

32a
. ~18!

Thus, for the case studied here, the ensemble of stop
points form a fractal set withdr51.15. The coupling of
space and time throughdr and dt is explicitly given by an
expression for the diffusion exponenth,

h5
2dt

dr
532a, ~19!

which is consistent with the above considerations.

V. CONCLUSIONS

Collective fluctuations in a few-body system of magne
holes have been studied. The two-dimensional motion on
n

rp

ca

re

a

ev
n
-
e

n

er

magnetic holes generates a braid in a three-dimensi
space-time. By studying the fluctuations of the signed cro
ing number a wide range of different dynamical behavior
observed, ranging from periodic to random motion. For c
tain parameter values the fluctuations were shown to
highly intermittent and a hierarchical ordering takes place
both space and time. In that case the motion is well mode
by a one-dimensional Le´vy walk with a power law distribu-
tion of step lengths which determines the fluctuation beh
ior. The dynamical evolution consists of both quiesce
~regular! and more chaotic phases which alternate tempor
in an interspersed way.

In conclusion, our experimental model system is sim
and well defined, with precision control of all the paramete
This, coupled with computer simulations in good agreem
with experiments, allows us to look for general features
nonequilibrium phenomena.
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